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Abstract— Existing PCB inspection methods are becoming 

outdated due to their limitations in detecting errors. 

Computer vision technology offers a more effective, 

automated solution for maintaining PCB quality by 

improving problem area identification. In this paper, we 

introduce YOLOv8x-HICAUps (YOLOv8x-HorNet-

CBAM-Attention based Up-sampling), an innovative 

method for PCB defect detection that enhances earlier 

developments while tackling significant challenges in 

practical applications. The imperfections in the surface of 

Printed Circuit Boards (PCBs) during the production 

negatively impact product quality, directly affecting the 

stability and dependability of devices. Precisely identifying 

small flaws on the compact PCB surface amidst intricate 

backgrounds continues to be a major challenge. Earlier 

models showed encouraging outcomes but continue to 

encounter limitations, such as insufficient real-world 

validation, elevated computational expenses for training, 

and an emphasis on identifying only minor flaws, which 

limits their adaptability. YOLOv8x-HICAUps includes 

multiple crucial innovations to tackle these difficulties, 

featuring the use of the HorNet backbone, CBAM-driven 

attention mechanisms, attention based up-sampling, and 

enhanced detection heads. The HorNet backbone is 

optimized to capture intricate features from high-density 

PCB designs and improves the capacity to identify even 

tiniest flaws. The integration of CBAM will improve 

spatial and channel attention so that defects like "mouse 

bites" and "spur" can be accurately identified in intricate 

PCB environments. Attention-based Up-sampling 

promotes better preservation of defect characteristics, 

preventing blurriness and improving overall detection 

precision. Finally, the simple design of the detection head 

stresses small-object detection, improving efficiency for 

immediate deployment on embedded systems. 

Harmonizing a lightweight design with exceptional 

accuracy, YOLOv8x-HICAUps is fine-tuned for resource-

limited settings and has enhanced generalizability and 

effectiveness in practical PCB manufacturing situations. 

Extensive tests on PCB defect datasets confirm the 

capabilities of YOLOv8x-HICAUps, demonstrating 

superior detection accuracy of 98.3% and reliability in 

comparison to current models, thereby establishing it as a 

valuable resource for practical PCB quality assessment. 
 

Keywords— PCB defect detection, Deep learning (DL), 

YOLOv8x, small-object detection, Defect Classification, 

Machine vision. 

 

I. INTRODUCTION 

Identifying the problem area is important for maintaining the 

quality of Printed Circuit Boards [1]. With the advancement in 

Computer Vision technology, conventional inspection 

techniques have proven inadequate with respect to the scope 

of error-prone actions and are gradually being 

substituted with automated techniques. This includes classical 

techniques like thresholding, edge detection, and 

localization techniques, as well as ML and DL techniques [2]. 
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Among these techniques, Automatic Optical Inspection (AOI) 

has emerged as one of the most commonly employed 

techniques for identifying PCB defects, resulting in notable 

enhancements in precision and Effectiveness. The 

development of Electronic Information sector [3] and the 

progress of present and future Information Technology [4] 

have promoted the continuous growth of demand for PCB 

products and brought new challenges to PCB manufacturing. 

The current trends in PCB manufacturing support higher 

reliability, higher quality, and smaller sizes, making defect 

detection important. These advances have brought significant 

challenges to the defect detection system in PCBs using 

Machine Vision. 

The PCB production is a complex process and it often creates 

various defects, with some minor defects, such as open circuit, 

short circuit, and spur will have adverse effects on the 

consistency of PCB component functionality, which poses 

difficulties for the model to effectively detect various flaws 

and exactly at that same instant. 

Because of the variation in production processes, the number 

of Defects on PCB surfaces usually sums to less than 4500 

pixels, and the measurement of spurs typically remains at less 

than 300 pixels, which accounts for only 0.005% to 0.07% of 

detailed images, which have about 6500000 pixels resolution 

[6]. Hence, its relatively challenging to obtain rapid and 

precise analysis for small-scale defects. Recently, many 

concepts integrating Machine vision and Deep learning 

concepts have widely been used to detect defects in PCBs as 

they can learn independently and replace tasks with 

knowledge-centric projects [5], [6]. PCB is not defined in the 

network structures using DL [7], which can be mainly divided 

into the classification process, product identification process 

and distribution partner [2]. In particular, the object detection-

based algorithm usually has two levels of detection. 

Algorithms that generate regional proposals to identify objects 

for recognition purposes like Faster R-CNN and single-level 

search algorithms, which are known for their fast capabilities 

by simultaneously providing the product distribution and 

location information. For example, Hu and Wang [8] 

demonstrated the accuracy of the small PCB problem using 

Faster R-CNN with ResNet50 as a simple model design, 

(MobileNet-YOLO-Fast) has compact size and impressive 

instantaneous efficiency. Lee et al [10] combined Hybrid-

YOLOv2 and Faster R-CNN (FRRF) design to accurately 

identify the double-in-line package (DIP) soldering issues in 

PCBs. YOLO-HMC [11], is an improvised method for surface 

defect detection in PCBs, has a temporal architecture but the 

quality is slightly lower for defect detection. The mentioned 

algorithm has achieved very powerful detection. However, the 

problem of precise and instant identification of small 

differences between complex PCBs by adjusting the density 

and sample rate has not been fully solved. The feature 

engineering features of YOLOv8x are specially improved and 

optimized. The results of the project include, 

1) This project presents a new model with YOLO-HorNet-

CBAM-AUps (YOLOv8x-HICAUps) framework based on the 

YOLOv8x development, which improves the lightweight of 

the model while improving the accuracy, efficiency and rapid 

development. 

2) The Backbone architecture uses the HorNet model to 

improve resource cleanup and data interoperability. The 

enhanced Convolutional Block Attention Module (CBAM) is 

designed to improve the ability of the network to extract 

features (such as short circuit and open circuit) from the 

complex backgrounds of PCB substrates which has similar 

colors and look. 

3) The up-sampling process is treated as operational up-

sampling (AUps), so that the entire PCB image content 

semantic information can be quickly and accurately detected 

for thick targeted PCB defects on the surface in a wide 

receptive field. AUps achieves a better balance between 

performance, accuracy and design, by eliminating the merging 

burden while keeping the content sufficient to utilize the 

ability of small DH to identify small problems and complete 

heavy models simultaneously.  

 

The Printed Circuit Board defect detection process is detailed 

in Section II, and the YOLOv8x-HICAUps model is detailed in 

Section III. By its following Section, the experiment and results 

of the proposed solution is implemented on publicly available 

data. 

II. RELATED WORKS 

A.  Vision-Based Methods used in PCB Defect Detection 

Detecting surface defects on PCBs is essential for ensuring the 

quality and reliability of the modern electronic devices. Over 

the years, several strategies for automating and improving 

flaw identification have been presented. These approaches can 

be divided into the following categories: The traditional 

method of PCB defect detection relies on manual inspection 

that is both time-consuming, error-prone, and not scalable for 

industrial manufacturing. AOI was based on an improvement 

over the principle of optical-based defect detection but 

suffered issues about robustness, generalization, and cost that 

most smaller enterprises could not afford. Some techniques 

employed for image processing were threshold segmentation 

[12], edge detection, segmentation methods [13], Support 

Vector Machines [14], and Backpropagation Neural Networks 

[15] as typical algorithms of machine learning. Those 

techniques, however, did suffer problems with image 

alignment and referencing. Deep learning has now changed 

the game in the detection of PCB defects. It is showing 

outstanding improvements in accuracy, robustness, and 

scalability. 

Region proposal-based two-stage detectors such as Faster R-

CNN [8] are highly accurate but very expensive in terms of 

computations and slow. One stage detectors like YOLO series 

[9] are fast and accurate. In comparison with other concepts 

and algorithms, both accuracy and the detection speed are 
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higher [16]. In the advancement of YOLOv4, GsIoU [17] is 

used for better box regression, while in the advancement of 

YOLOv5, new data augmentation methods are incorporated to 

improve inference speed. The other is SSD or Single Shot 

Multibox Detector [18], which focuses on real-time detection 

and tends not to perform as efficiently in detecting small 

objects in complex backgrounds. A new lightweight defect 

detection scenario was introduced, YOLOX [19], using DL 

techniques. It is a small-scale network that does not require 

any intervention. YOLOX integrates an enhanced version of 

CSPDarknet and incorporates the Coordinate Attention 

mechanism [CA], remarkably improving the ability of the 

model to detect small defects on PCB surfaces. The CA 

mechanism especially focuses on enhancing spatial and 

channel interrelationships between feature maps, hence 

allowing the network to effectively improve and identify fine 

defects that might be lost on standard detection models. 

Another alternative was presented by Liu et al [17], who used 

YOLOv4 as the base model of their study. The new box 

regression loss function they have developed is called 

Gaussian Intersection-over-Union (GsIoU), that is focused on 

maximizing the precision of bounding box prediction. GsIoU 

assesses the prediction box coherently at all possible anchor 

points, thus providing it with more flexibility to adjust 

according to the change in shape and size of objects. The 

accuracy of the final box regression is improved by this, 

especially when objects to be detected are small or have 

variability in shape, increasing the effectiveness of the whole 

defect detection system. 

 

B. YOLO-Based PCB Defect Methods 
Advances within the model of YOLOv5, together with all its 

models in the family of YOLO models, provide attention 

mechanisms like CA and CBAM. These significantly boost 

the model’s ability to focus on subtle and complex defects. 

The mentioned techniques enable the model to give attention 

to important areas of the image; consequently, detection 

accuracy, particularly for minor defects, significantly 

increases, such as micro scratches, open circuits, and 

unwanted copper. For industrial defect detection purposes, 

YOLOv5 has improved both the inference speed and the 

precision using multiscale detection techniques and data 

augmentation strategies. These techniques, Coordinate 

Attention and the Convolutional Block Attention Module 

(CBAM) [20], were added to variants YOLOX [19] and 

YOLO-MBBi [21] for better detection of tiny defects. YOLO-

MBBi [21], is an enhanced version of YOLOv5 for defect 

detection in PCBs, which incorporates MBConvolution, 

CBAM, Bi-directional Feature Pyramid Network, Depth-wise 

convolutions, and the SIoU loss function to improve detection 

accuracy and efficiency, achieving superior performance 

compared to existing methods in terms of precision and 

computational efficiency. Improvements in the detection of 

PCB defects have been achieved using advanced techniques, 

including [22] YOLOv5, CBAM, CARAFE, and attention-

based Up-sampling. Real-time processing, something really 

important in an industry where efficiency and speed really 

matter—is achieved along with improvements in detection 

accuracy, especially for smaller and intricate defects. PCB-

CFR [6] integrates Coordinate Feature Refinement (CFR), 

CARAFE Up-sampler, additional detection layers, and 

advanced attention mechanisms to enhance multi-scale feature 

fusion, improve tiny defect detection, and achieve real-time 

performance in defect detection applications in PCBs of 

YOLOv6[23], a single stage object detection framework 

specifically designed to address industrial application 

challenges. It focuses on improving detection accuracy and 

inference speed while maintaining computational efficiency. 

YOLOv7[24] a groundbreaking improvement in real-time 

object detection that leverages innovative "bag-of-freebies" 

techniques. These techniques enhance model training without 

adding inference cost, achieving state of art performance in 

both speed and accuracy. 

The use of HorNet in YOLOv8x_HICAUps model could 

provide comparable accuracy to PCB-YOLO with reduced 

computational overhead and attention-based Up-sampling 

likely provides better feature enhancement compared to PCB-

YOLO's anchor box strategy, especially for irregularly shaped 

small defects. the model YOLOv8x_HICAUps focuses on 

modern, efficient components (HorNet, CBAM, attention-

based Up-sampling), making it more lightweight and 

adaptable than PCB-YOLO. While PCB-YOLO [25] has been 

fine-tuned for PCB defect detection with specific 

improvements like UAM and EIoU, the YOLOv8x_HICAUps 

model’s design offers competitive advantages in handling 

small objects, resource efficiency, and flexibility for advanced 

datasets like HRIPCB. 

YOLO-HMC [11], an Improvised Method for Surface Defect 

Detection in PCBs. Introduces several key improvements to 

improve the accuracy of the detection and efficiency for tiny 

PCB defects in complex backgrounds. The HorNet structure 

improves the ability of feature extraction, especially for tiny 

defects in dense and complex PCB layouts. It enhances the 

anti-interference ability of the model by providing richer 

semantic information for feature extraction and improving the 

ability to highlight locations of defects in highly similar PCB 

backgrounds. This ensures better localization of defects, 

especially for defects with subtle differences in shape or color 

from the background, and replaces the traditional Up-sampling 

layer with the CARAFE module, which aggregates contextual 

semantic information within a large receptive field. It reduces 

information loss during feature processing and improves the 

clarity of defect boundaries.  

Although YOLO-HMC might enhance the detection of 

defects, it has very poor precision when it comes to fine-

grained PCB defects as features are not fully refined. In 

contrast, YOLOv8x-HICAUps utilizes HorNet and CBAM, 

which reach a higher level of precision and recall, mainly in 

small categories of defects like 'spur' and 'mouse bite'. 
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Figure 1 Overall Workflow of YOLOv8x_HICAUps 

 

YOLOv8x is a recent release of the YOLO series, thus 

representing an extremely advanced algorithm for object 

detection regarding improved precision and speed. The 

customized HorNet [11],[26] backbone uses channel and 

spatial attention modules applied through CBAM and efficient 

feature fusion modules for C3 and C3HB. The backbone 

includes the Spatial-Pyramid Pooling Fusion to capture 

multiscale spatial information. The Up-sampling layer 

(attention-based Up-sampling [27]) also comprises an 

attention-based module that preserves spatial features while 

increasing the resolution. The presence of these modules 

enables the model to draw out and fine-tune features at 

different scales. This allows YOLOv8x to be used more 

efficiently in real-time detection scenarios, especially in 

complex environments with objects of varying sizes. It makes 

the model achieve better precision and robustness and suitable 

for various applications like object detection, segmentation, 

and classification. 

III. METHODOLOGY 

Object detection tasks in industrial settings are unique, 

especially when dealing with PCB defects. Unlike natural 

image detection tasks, PCB defect detection involves 

identifying minuscule [1] and often indistinguishable targets 

against a densely packed background. These targets are 

frequently tiny-sized pads, vias, or traces, which exhibit 

minimal contrast with their surroundings, leading to 

significant challenges such as false positives, missed 

detections, and low precision. This has led to the necessity to 

improve the detection architecture with specific needs for PCB 

defect detection [6]. 

YOLOv8x_HICAUps is an advanced detection framework 

that extends the YOLOv8 model by including sophisticated 

modules like HorNet, CBAM (Convolutional Block Attention 

Module), and attention-based Up-sampling. These modules 

are specifically introduced to improve feature extraction, 

fusion, and representation while detecting small targets in 

complex environments for PCB images. 

The proposed scheme is tested using ordinarily image 

processing. From the simulation of the experiment results, we 

can draw to the conclusion that this method is robust to many 

kinds of watermark images. 

 

A. Overall Framework of YOLOv8x-HICAUps 

As shown in Figure 1, we design a novel 

YOLOv8x_HICAUps framework based on improved  

YOLOv8, which consists of the backbone part for feature 

extraction, the neck part for feature fusion and the Detection 

Head part for final recognition results. Owing a significant 

quantity of small-size pads, vias, and compact traces being 

spread across the PCB substrate, this leads to some 

interference with the precise extraction of essential defect 

characteristics of the framework. This issue is frequently 

addressed by enhancing the channel and spatial focus of the 

model, Zheng et al [28], incorporated the Co ordinate 

Attention (CoordAtt) module and HorBlock module to the 
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network to improve the characteristics of feature extraction 

procedure in the channel domain and spatial domain, diminish 

the ailing characteristics, and understand the intricate context. 

According to the YOLOv7 architecture developed by Chen et 

al. [29], creating spatial features in the frequency domain via 

global filtering of HorBlock improved the precision of the 

algorithm on the dataset for finding defects. In order to tackle 

these challenges, the suggested YOLO CBAM-HorNet 

framework integrates various novel alterations to the 

conventional YOLOv8 structure. These adjustments aim to 

enhance feature extraction, attention mechanisms, and feature 

integration to increase the identification of small PCB defects 

while preserving computational efficiency. The foundation of 

the proposed framework leverages the HorNet module, which 

executes recursive gated convolutions via the C3HB module. 

Unlike traditional convolutional modules, the C3HB [26] 

setup enhances direct spatial interactions both before and after 

the feature extraction stage. This design ensures that the 

extracted feature maps are enriched with semantic 

information, improving the ability of the model to distinguish 

defects from the complex PCB backdrop. In addition to 

semantic enhancement, the C3HB module includes 

convolutions lightweight depth-wise separable (DWConv) to 

reduce computational requirements while preserving the 

integrity of crucial features. This technique is particularly 

skilled at handling small targets tightly clustered in the image, 

enabling the system to capture high-quality features without 

interference from irrelevant components. The neck of the 

YOLOv8 model is crucial for combining spatial location 

information from shallow layers with the semantic information 

obtained from deep layers. However, the primary neck module 

has difficulty effectively aiming at the small faulty areas, 

especially against the complex PCB backdrop where the 

characteristics of defects are often hidden by adjacent 

components. The neck region includes CBAM (Convolutional 

Block Attention Module) to tackle this problem. The CBAM 

enhances the network's ability to discriminate by focusing 

selectively on important feature channels and spatial regions 

[20]. Unlike other attention mechanisms, the CBAM employs 

both channel and spatial attentions to emphasize important 

features and reduce background noise. This combined 

attention method is highly effective for spotting small flaws 

that may be overlooked in a larger setting. However, the 

typical module for the CBAM often relies solely on the 

maximum response values throughout the complete feature 

map, potentially missing several defect targets in one image. 

To overcome this limitation, we present an adapted CBAM 

module that partitions the feature map into subspaces, 

ensuring that within each subspace, all defect features are 

significantly highlighted. This modification enables the model 

to efficiently handle multi-target detection situations, ensuring 

that all characteristics related to defects are preserved for later 

processing. Feature fusion [30] using CBAM in the neck is 

crucial for synthesizing multi-scale information from different 

levels of the network. The Up-sampling part of the original 

YOLOv8 design uses simple methods like Nearest-neighbor 

interpolation, which often miss deep semantic details and do 

not effectively enhance feature information. This constraint 

becomes especially difficult when detecting minor flaws, as 

their features may be further diminished during the Up 

sampling process. To tackle this issue, we incorporate an 

attention-based Up-sampling module into the neck. This 

module generates context-aware Up-sampling kernels that 

consider both local and global traits, ensuring that significant 

defect-specific details are preserved throughout the fusion 

process. By combining spatial and semantic data through 

attention-guided reconstruction, this element greatly enhances 

the receptive field and produces more detailed feature 

representations. As a result, the model achieves enhanced 

detection capabilities for minor defects while maintaining the 

richness of semantic features. The YOLOv8 detection head 

recognizes objects at different scales. In the original design, 

three detection heads were developed to recognize large, 

medium, and small items. Although this design is effective for 

identifying natural images, it proves to be less efficient for 

detecting PCB defects because most targets are quite small. 

The large and medium sized detection heads decrease the 

feature maps to a point where small flaws are lowered to 

subpixel levels, leading to significant information loss. This 

extreme compression adversely affects the model's detection 

precision, especially for small and tightly grouped defect 

targets. In this case, we improve the detection head by keeping 

the small objects detection head only. This is carefully 

adjusted to detect very small imperfections. Eliminating the 

large and medium detection heads along with their feature 

pyramid structures stops the needless compression of defect 

features. Concentrated design facilitates a singular emphasis 

on enhancing the thorough collection of semantic and spatial 

information in small targets, guaranteeing accurate detection 

and reducing false negatives. While the original YOLOv8 

backbone excels in general object detection, it struggles with 

the intricate features of PCB defects. To enhance feature 

extraction, we integrate the HorNet backbone, which 

comprises the C3HB module and recursive gated 

convolutions. These lightweight convolutional methods 

efficiently capture high-level semantic features while 

minimizing computational expenses. The HorNet backbone 

significantly improves the ability of the model to differentiate 

between regions that are free of defects and those that contain 

them, even in crowded real time PCB images.  
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B. Description of the Improvements 

 
Figure 2 Down-Sampling Process 

 

1) HorNet based Feature Extraction Technique: In the case of 

defect detection on PCBs, there exists a high occurrence of 

defect-free components, and the target area for detection in 

most cases contains minimal contrast as compared to its 

background. In this case, it becomes quite challenging to 

obtain features since this leads to interference in the acquired 

data, reducing the efficiency in defect identification. 

Densely packed components are observable in detection 

images, as shown in Figure 2. The channel dimension (C) 

increases while the feature map dimensions (H×W) decrease 

as we extract more information from these images. The size of 

the convolution filters in the feature extraction process 

remains roughly constant with this reduction to maintain a 

constant receptive field in the network model. Convolution 

kernels subsequently incorporate large areas of such flawless 

structures surrounding the defect regions to the convolution 

process. Such flawless structures interfere with the extraction 

of the features since they are often similar and packed highly, 

which complicates the task of the convolution network in 

detecting the defects accurately. We recommend the 

application of the C3HB module in an attempt to correct the 

feature extraction capability of the model. In contrast to the C3 

module, the HorNet design, that is based on lightweight 

convolution operations, is incorporated into the C3HB. To get 

comparable results, HorNet's depth-wise separable 

convolution (DWConv) only requires one-third of the 

calculations required for traditional convolution [26]. 

As displayed in Figure 3, as the input P0 is fed into HorNet, it 

expands the dimension by using the Convolution approach and 

then splits it into two groups of feature maps P1 and Q0 based 

on a predefined ratio. Following the completion of 

 

 
Figure 3 HorNet Process 

 

DWConv, Q0 gives various sub-feature map outputs Qi 

(1≤i≤α). Subsequently, P1 and Q1 perform the dot product 

operation together with convolution and increase the 

dimension to achieve P2. Continue the iteration process until 

reaching the final sub-feature maps Qα.  
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By connecting feature information through the different 

information exchanges described above, the HorNet generates 

self-weighted parameters that allow the network model to 

achieve high-order deep characteristics with more robust 

semantic data, effectively improving the network's clarity. The 

following equation represents the HorNet 

process assuming the input as x ∈ R H×W×C Where f stands for 

convolution operation, 𝜑 for depth-wise separable 

convolution, and α for the spatial order established during 

HorNet's operation.  

 

 
 

 

2) CBAM-Based Attention Mechanism: For object 

identification methods, it is quite challenging to 

separate faulty locations from the intricate backdrop of PCB 

pictures. Our work addresses this by incorporating the 

Convolutional Block Attention Module (CBAM) into the 

YOLOv8 architecture's neck and backbone components. 

As shown in Figure 4, CBAM incorporates channel attention 

and spatial attention sequentially to suppress distracting 

background noise and let the model focus on key elements. 

This double attention method significantly helps the model to 

detect very minute defects in densely placed PCB layouts. By 

combining spatial and channel attention [31], CBAM 

effectively emphasizes faulty traits at many levels, in contrast 

to conventional attention mechanisms like SENet [32], which 

solely focus on channel-wise properties. This skill is 

particularly useful for detecting PCB defects, since these 

defects are typically small and difficult to notice.   

Despite numerous studies exploring enhanced attention 

mechanisms like MCBAM [11], which divides feature maps  

into subspaces for targeted attention, MCBAM can 

occasionally unduly emphasize particular regions, leading to 

the missed detection of smaller or subtler defects. In contrast, 

CBAM places a balanced focus on both global and local traits, 

providing robust and flexible enhancement of features without 

introducing additional computational complexity.  

 

The CBAM module operates in two stages:  

 

 
 

where f 7×7 is a convolutional function with a 7×7 kernel. By 

sequentially applying Mc and Ms, CBAM adaptively enhances 

relevant features while addressing limitations such as 

overemphasis on maximum responses, which can arise in 

more complex attention modules. This design ensures robust 

performance for detecting multiple tiny defects in PCBs. 

 

Figure 4 Basic Process of CBAM 
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Figure 5 Attention Based Up-sampling Mechanism 

 

3) Attention Based Up-sampling Mechanism: In this study, we 

employ an Attention-based Up-sampling (AUPS) technique to 

improve feature reconstruction [27]. Although conventional 

techniques such as nearest-neighbor Up-sampling or 

transposed convolution are useful, they frequently struggle to 

gather enough context from surrounding pixels. This may 

result in artifacts like hazy transitions or patchy color changes, 

especially in activities needing high spatial precision, like 

PCB defect identification. CARAFE (Content-Aware 

ReAssembly of Features) [22] has surfaced as a formidable 

solution to these problems by utilizing an expanded receptive 

field and dynamic kernel forecasting to enable context-

sensitive feature reconstruction. Nevertheless, CARAFE adds 

extra computational intricacy and design limitations, rendering 

it less suitable for certain lightweight models and real-time 

uses. Rather than using CARAFE, we utilize a more effective 

attention-based Up-sampling method. This technique attains 

better reconstruction by directly representing the spatial  

connections and smoothness between neighboring pixels. 

AUps finds a balance between computational efficiency and 

reconstruction quality as shown in Figure 5, retaining enough 

contextual details while avoiding the overhead linked with 

approaches such as CARAFE.           

 

4) DH Optimization Technique for Minimal PCB Defect: In 

current studies, small targets are generally characterized by 

either their comparatively small physical dimensions in reality 

or as items that take up less than 32×32 pixels within a picture 

[33]. Based on the PCB dataset examined in [34], several 

defect targets are actually lower than 10×10 pixels, as 

emphasized in Table I. These small defect targets frequently 

lack essential information during feature extraction because of 

their restricted dimensions, posing a considerable challenge in 

defect detection activities. YOLOv8x, an enhanced iteration of 

YOLO, includes several detection heads (DHs) to tackle 

objects of different scales. In the original YOLO design, DHs 

relate to down-sampling factors of 8x, 16x, and 32x, intended 

for identifying small, medium, and large items, respectively. 

Although this multi-scale detection system guarantees strong 

performance for various object sizes, the PCB defect detection 

task mainly focuses on small targets that represent an 

insignificant percentage of the total image. For example, using 

an input image dimension of 640×640, the picture is 

minimized to just 20×20 pixels following the 32x down-

sampling DH process. This intense compression causes 

various small and medium-sized defect targets to be reduced 

to less than one pixel, resulting in considerable loss of 

semantic and positional data. Thus, employing all three DHs 

as done in the original YOLOv5 or YOLOv8[35][36] models 

is not ideal for detecting small objects in the PCB defect area.  

 

To overcome this limitation, we enhance the YOLOv8x 

detection head design for small defect detection by eliminating 

the medium and large object DHs. This method guarantees 

that the feature extraction process focuses on retaining 

intricate details essential for identifying small PCB defects. 

Our comparative experiments, demonstrated in Figure 8, 

confirm this optimization. The findings indicate that keeping 

just the small-object DH greatly enhances detection precision. 

By tailoring YOLOv8x's detection heads to the requirements 

of PCB defect detection, we achieve enhanced accuracy and 

efficiency. A detailed discussion of these results is provided in 

Section IV. 
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IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset 

The Experimental setup is shown in Table 1. Illustrated in  

 
Table 1 Experimental setup 

 

Figure 6, the dataset employed in the public dataset HRIPCB 

[37] published by the experiment Peking University, featuring 

693 pictures and six flaws with 2777×2188 average pixels. By 

the ratio of 9:1 the train and test data is split and worked 

according to it.  

 

B. Model Evaluation Indicators 

Object detection differs from classification; in classification, it 

is essential to identify where the predicted bounding box is 

located, and each image in object detection may include 

various types of objects. Consequently, mean Average 

Precision (mAP) is utilized in this study. mAP denotes the 

average value of defect average precision (AP). The formula 

for calculation is outlined below. While the recall indicates the 

amount of missed detection, the precision clearly shows how 

accurate the detections are. 

 

Letters TP, FP, and FN stand for True Positive, False Positive, 

and False Negative. 

 
Figure 6 HRIPCB dataset defect diagram: (a) missing hole; (b) 

open circuit; (c) spur; (d) short; (e) spurious copper; and (f) 

mouse bite. 

 

C. Result Analysis 

The HRIPCB dataset was used to train the YOLOv8x-

HICAUps model, which convergence reached at epoch 100. 

Obviously, the box loss, classification loss, and DFL loss have 

significantly decreased and stabilized after epoch 50 as shown 

in Figure 7. Visual depictions of loss metrics clearly show that 

both training and validation losses are persistently decreasing 

without signs of overfitting, which illustrates that the 

conclusion of learning processes has been successfully 

completed. At 50 and 100 epochs, precision, recall, and mAP 

became stabilized at that stage, the precision was 0.9786, 

recall was 0.9784, mAP@0.5 was 0.983, and mAP@0.5:0.95 

was 0.537. These trends reveal that optimal performance in 

defect detection in PCBs is achieved through the model's 

strong generalization ability as well. Detection of every 

subcategory of the defect in YOLOv8x-HICAUps was highly 

impressive. For instance, the fragile subcategory Missing hole 

has been rated with a precision of 0.987, a recall of 1, and 

mAP@0.5 of 0.994. The remaining defective subcategories 

that are of lesser importance include Mouse bite, Open circuit, 

and Spurious copper. Each of them recorded high precision 

rates combined with impressive recall rates, having their 

respective mAP@0.5 values of 0.970, 0.982, and 0.990 as 

shown in Table 2. The model shows high and consistent 

precision for complex defects, such as Spur and Short, which 

vary widely in size and nature, making it a reliable option for 
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Figure 7 Model Training Results 

 

 
Table 2 Values of Defects detecting PCB faults. 

 

In comparison with other models like YOLOv7, YOLOv8, 

and Faster R-CNN as shown in Figure 8, the results obtained 

from YOLOv8x-HICAUps are better in all the essential 

metrics, namely mAP@0.5 and mAP@0.5:0.95. Although 

false positives have hampered Faster R-CNN and YOLOv8 

and YOLOv7 had missed detections of certain types of 

defects, the YOLOv8x-HICAUps has significantly 

outperformed them in accuracy, precision, and reliability, 

which substantially mitigated these drawbacks. Visual 

representations of loss and other related metrics also support 

these results. The training and validation loss metrics that 

show a steady decrease along with the stable performance 

metrics like precision, recall, and mAP@0.5 indicate that 

YOLOv8x-HICAUps is successful in both learning and 

detection accuracy. It is, however found to be in trend across 

all epochs without any signs of overfitting, thus proving to be 

robust and versatile for practical applications in defect 

detection. YOLAv8x-HICAUps provided HorNet, CBAM, 

and attention-based Up-sampling techniques for better feature  

extraction and detection. It highly decreased the number of 

model parameters; therefore, the convergence of training 

phase got accelerated without significantly increasing the total 

computational cost. This approach makes it suitable for many 

resource-constrained industrial systems. Based on this, the 

YOLOv8x-HICAUps model stands out. It has practical use in  

real settings because the high accuracy, recall, and mAP lead 

to a marked aspect of fast convergence with the possibility of 

the presence of several types of defects. The model is, 
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therefore, an error-free model in PCB defect detection not 

only based on advanced methodologies and operational 

effectiveness but also in showing signs of establishing a new 

standard concerning reliability and efficiency in industrial 

defect identification. 

A prominent characteristic of the model is the employment of 

the HorNet backbone that has been fine-tuned for the 

identification of complex features within PCB layouts to 

detect minuscule flaws such as "mouse bites" and "spur." This 

enhanced backbone enhances feature extraction, which in turn 

enables the model to recognize defects that would be difficult 

to identify in the conventional models. The CBAM improves 

the model using spatial and channel attention to increase the 

accuracy in defect location detection. This process is in step 

with YOLO-HMC’s [11] HorNet and using attention 

mechanisms so that it functions more efficiently over complex 

PCB background where defects would be hard to distinguish 

from substrates. The attention-based up-sampling mechanism 

in YOLOv8x-HICAUps ensures semantic coherence at every 

step of the up-sampling process. This confirms that important 

defect features, such as small holes or fine lines, are preserved 

during feature scaling, avoiding the loss of critical details 

often encountered with simpler interpolation methods. By 

focusing on specific features relevant to defect detection, the 

attention-based up-sampling method enhances feature 

reconstruction and leads to more accurate and accurate 

detection results. This further enhances the model by adding 

C3 layers, SPPF (Spatial Pyramid Pooling Fast), and C3H 

components. These enrichments serve to add depth and 

flexibility in the model can better detect defects at different 

Scales. The detection head streamlined for detecting small 

objects confirms that even the smallest defects are detected 

with great efficiency, thereby making YOLOv8x-HICAUps a 

reliable choice for real-time execution on embedded devices. 

All these developments together make YOLOv8x-HICAUps 

extremely effective, accurate, and versatile for practical PCB 

defect identification tasks. 

 

Figure 8 Comparison with different Models 

 

V. CONCLUSION 

This paper introduced a new approach using YOLOv8x for 

HICAUps (HorNet Integrated with CBAM and Attention-

based Up-sampling) in order to enhance the prediction and 

identification of complex causal connections and uplifting 

trends in complex datasets. The task is challenging because of 

the different types of data patterns that require unique 

detection criteria and often intricate relationships among 

features that hide the existence of subtle patterns. 

To overcome these challenges, the YOLOv8x framework was 

augmented with advanced attention mechanisms like CBAM 

and AUps, which further improved its responsiveness to the 

critical spatial and causal data. Such improvement further 

enables the model to better detect minor patterns and predict 

causal uplift across various settings and thus further enhance 

its real-time functionality. Comparative tests have 

demonstrated that the enhanced model successfully detects 

and predicts complex patterns with superior accuracy of 

98.3%. Even with the good performance of the model, the 

existing validation is based primarily on public domain 

datasets, and the data available is still limited in scope. 

Therefore, an in-depth understanding of various data trends 

and causal relationships will be achieved through additional 
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data collection and refinement. The model will update 

frequently in the future with real-world datasets and few-shot 

learning methods to adjust to scenarios with scarce labelled 

data. This would not only make the model more resilient but 

also increase its usability in industrial predictive systems and 

causal evaluation, thus further solidifying its position in real-

time, large-scale data settings. 
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